CHARACTERIZATION OF DIFFERENT CRYSTAL FORMS OF IBUPROFEN, TINIDAZOLE AND LORAZEPAM

N. Udupa, College of Pharmacy, Kasturba Medical College, MANIPAL - 576 119, INDIA.

ABSTRACT

Different crystal forms of ibuprofen, tinidazole and lorazepam were prepared and subjected to physicochemical tests like particle size, shape and melting point determination, scanning of U.V., I.R. and N.M.R. Patterns, stability, dissolution and diffusion rate The nature of solvents and method of microprecipitation effect different properties of crystal forms of the drugs.

INTRODUCTION

The degree of crystallinity of drugs can be changed suitable choice of solvents. Different polymorphs have differences in phylicochemical properties (1 - 4). The present work undertaken to characterise the different crystal forms of poorly water soluble drugs namely ibuprofen, tinidazole and lorazepam.

MATERIALS AND METHODS

Supercooled and slow cooled variety as well as crystal forms of ibuprofen, timidazole and lorazepam precipitated from ethanol, chloroform, propyleneglycol and acetone were prepared and labelled

1591

UDUPA 1592

1/2/3 control and a,b,c,d,e,f(5). Melting point, particle size and shape of each physical form were determined.

The U.V. spectra of ibuprofen and tinidazole in 0.1 N lorazepam in ethanol were scanned using Beckman and spectrophotometer model 240. The I.R. spectra of each crystal form Nujol was scanned in a Perkin spectra of each crystal spectrophotometer. The N.M.R. ibuprofen and tinidazole were scanned after dissolving chloroform (CDCL3) deuteriated and that of in deuteriated DMSO using Varian NMR spectrophotometer.

Dissolution study of 100 mg. each of crystal form was conducted using USP XX Dissolution rate testing apparatus in distilled water at 37 degree C and 100 R.P.M. speed. Ibuprofen and Tinidazole samples were diluted with 0.1 N. NAOH, lorazepam samples diluted with ethanol and absorbance readings were recorded at 264, and 236 nm respectively using Beckman spectrophotometer(5).

Diffusion study of 10 mg. of each drug sample was conducted by of pH 7.4 phosphate buffer as acceptor taking 200 ml. medium and 30 ml. of pH 8.0 phosphate buffer as donor compartment medium using a 20 mm. dis glass tube with a cellophane membrane as diffusion interphase. The contents of acceptor compartment medium were uniformly stirred at a constant speed and temperature of the medium was maintained at 37 degree C(5).

The stability of each physical form of drug was studied by exposing the samples to 37 degree C. and 85% RH in a high humidity oven.

RESULTS AND DISCUSSION

The nature of solvents and slow cooling or super may affect the crystal forms, size and shape of drugs. The

Drug Development and Industrial Pharmacy Downloaded from informahealthcare.com by Biblioteca Alberto Malliani on 01/27/12 For personal use only.

TABLE 1 PHYSICACHERICAL PROPERTIES OF IBEPROPEN(1) TEMENATALE(2) AND LORAZEPAN(3) CRYSTAL FORMS

		4	PARI LULE		POINT (SEE	Ŀ	,		¥ 6	RATE	FF 18.	.,	DEGRADATION IN	DEGRADATION IN	i i
1		A POS	OLICE (MICRONS)		3	(Leighte (3	(1/2 HOUR)	e É	30	(CM/MEN)	•	37.00	+37 DECREE C)	€ €
1,2,3 R		-4	7	m	-	7	~	-	2 3	~	7	m	-	7	2
=	Received from	prismatic prismatic	prismetic	tubular and	R	127	170	24.0 B	3.0 14.	6	170 24.0 88.0 14.3 0.430 0.040 0.040	0.040	0	7.	7.7 21
		(6 - 15)	(30 - 120)	(3 - 15)											
Ø.	Super Cooling	irregular (15 - 40)	irregular (5 - 220)	irregular (15 - 75)	23	125	160	14.3 6	5.1 17.	0	125 160 14,3 63,1 17,0 0,315 0,031 0,036 0	1 0°036	0	25.0 20	8
S.	Slow Cooling	irregular (10 - 30)	irregular (10 - 25)	irregular (10 - 30)	છ	115	155	19.3 7.	.6 21.1	0.0	155 19,3 72,6 21,0 0,243 0,028 0,041 0	0.043	0	23.0 22	23
ک ن	PPT from Alcohol	circular & needle (3 - 15)	tubular (L30 - 100) (L15 - 20)	tutular (L15 – 95) (W 5 – 10)	ĸ	501	<u>851</u>	33.8 %	2 12.1	.00	33.8 92.2 12.0 0.313 0.033 0.050 5.5 13.5 47	\$ 0. 05C	5.5	. U.S	74
Σ. Τ	PPI from Chloroform	irregular (10 - 20)	prismatic & needle (L40 - 120) (W 6 - 12)	tubular (L15 - 35) (W 2 - 4)	2 2	112	165	21.9 74.5 14.0	14°1		0,150 0,031 0,058	. 0.056	0	9.6	92
o E G	PPT from Propylene Glycol	ctrcular (2 - 6)	tutular (L20 - 50) (W 3 - 6)	xound (2 - 6)	8	82	145	ц.9 %	.4 18.	0 0	11.9 92.4 18.0 0.451 0.044 0.064 7.0 10.2 37	0.064	7.6	10.2	33
<u>a.</u>	PPI from Acetone	prismetic & Tubuler (3 - 10)	tubular (L30 - 100) (L15)	reedle (L10 - 15) (W 3 - 6)	8	83	148	4.8 85	4.8 89.2 15.0		0.201 0.035 0.061	0.061	0	0	92

TABLE 2

PHYSI CO	PHYSI COCHINE CAL, PROPERTI RS OF DIFFERENT CRYSTAL FORMS	OF DIFFERENT CRYSTAL	FORES
Properties	I buprofen	Tinidazole	Lorazepam
1. U.V. Spectra (Wavelength Maxima)	175,236,264	176,368	160,236,320
2. Observed changes in I.R.Spectra (CM-1)	2800,1580,1400, 800	2800,1800,1400, 1000,800	3000-3600,1600,1400, 1200,800
3. D.S.C. (Melting peaks	352	408.5	470 (Single peak)
Control degree N. a. Supercooled		408 709	1 1
b. Slowcooled c. Kthanol ppt d. Chloroform ppt	2,440 2,400 2,400 2,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 4,400 3,400	407. 409.5	418,460 (Two peaks) 414,460(Two peaks)
e. Propylene Glycol pptf. Acetone ppt			406(Single peak) 415,456(Two peaks)
4. NWR Spectra (Chemical shift ppm)	1.0,4 1.5, 3H,4 2.4, d 3.8, 1H,9 7.0-7, 4,9H,m		2.5-3. 3,d 4.8d, aliphatic C-H(1) 5.9,d,aliphatic O-H(1) 6.9,d,aliphatic O-H(1) 7.32-7.7,m,aromatic
	11.5, IH, s		7.6,d of d, aromatic
		~i∆ ö B vi	7.3,d, aromatic C-H(1) 11.0, broad singlet, N-H(1) Deuteriation or irradiation of the O-H reduces the methine doublet to a sharp singlet.
			and the state of t

crystal forms resulted by precipitation from propylene glycol are having low meting point, circular shape, smaller particle size and higher degradation, dissolution and diffusion rates. Choloroform precipitates have higher melting point, bigger particle size, irregular shape, lower dissolution and diffusion rates and better stability. (Table 1). The U.V. and N.M.R spectra of different crystal forms(Table 2) of each drug namely ibuprofen, tinidazole and lorazepam are identical and superimposable indicating their similarity with respect to their chemical structure and number of hydrogen atoms.

differences were observed in I.R.Spectra, diffraction pattern and melting peaks of D.S.C. pattern in case of ibuprofen and tinidazole (Table 2). The control sample of lorazepam had single D.S.C. peak whereas the crystal forms resulting after precipitation from ethanol, chloroform and acetone had double peaks (Table 2) indicating the formation of solvates with above solvents. Thus polymorphism is predicted in case of ibuprofen and tinidazole due to difference in melting X-Ray diffraction pattern and I.R. point. spectra. formation of lorazepam is predicted by observing differences and X-Ray diffraction pattern and in I.R. spectra compared to control sample.

CONCLUSION

Different crystal forms of drugs may be characterised by studying their melting point, particle size, shape, stability and scanning their I.R., X.R.D., N.M.R. and D.S.C. patterns and also by dissolution and diffusion studies. Particles resulting by precipitation from propylene glycol and acetone are having smaller size, circular shape and higher degradation, dissolution and diffusion rates but particles resulting by precipitation from solvents like chloroform have bigger size, irregular shape, lower dissolution and diffusion rates and better stability.

1596

REFERENCES

- Yalkowsky, Techniques of Solubilization of drugs, Marcel Dekkar, New York, 1985.
- R.J. Mesley and E.E. Hangton, J.Pharm. Sci., 1967, 56, 195.
- W.I. Highchi, J.Pharm. Sci., 1967, 56, 200.
- S.Shinauda, J.Pharm. Sci., 1970, 59, 785.
- N. Udupa, S.V. Tatwawadi, K.D.Gode, Indian Drugs, 1986, 24(1), 5. 24.

UDUPA